Variational localizations of the dual weighted residual estimator

نویسندگان

  • Thomas Richter
  • Thomas Wick
چکیده

The dual weighted residual method (DWR) and its localization for mesh adaptivity applied to elliptic partial differential equations is investigated. The contribution of this paper is twofold: first, we introduce a novel localization technique based on the introduction of a partition of unity. This new technique is very easy to apply, as neither strong residuals nor jumps over element edges are required. Second, we compare and analyze (theoretically and numerically) different localization techniques used for mesh adaptivity with respect to their effectivity. Here, we focus on localizations in variational formulations that do not require the evaluation of the corresponding differential operator in the classical strong formulation. In our mathematical analysis, we show for different localization techniques (established methods and our new approach), that the local error indicators used for mesh adaptivity converge with proper order in the error functional. Several numerical tests substantiate our theoretical investigations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual weighted a posteriori error estimation for a new nonconforming linear finite element on quadrilaterals

After a short introduction of a new nonconforming linear finite element on quadrilaterals recently developed by Park, we derive a dual weighted residual-based a posteriori error estimator (in the sense of Becker and Rannacher) for this finite element. By computing a corresponding dual solution we estimate the error with respect to a given target error functional. The reliability and efficiency ...

متن کامل

Least squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads

In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...

متن کامل

Mesh adaptivity in optimal control of elliptic variational inequalities with point-tracking of the state

An adaptive finite element method is developed for a class of optimal control problems with elliptic variational inequality constraints and objective functionals defined on the space of continuous functions, necessitated by a point-tracking requirement with respect to the state variable. A suitable first order stationarity concept is derived for the problem class via a penalty technique. The du...

متن کامل

Frequency Analysis of Embedded Orthotropic Circular and Elliptical Micro/Nano-Plates Using Nonlocal Variational Principle

In this paper, a continuum model based on the nonlocal elasticity theory is developed for vibration analysis of embedded orthotropic circular and elliptical micro/nano-plates. The nano-plate is bounded by a Pasternak foundation. Governing vibration equation of the nonlocal nano-plate is derived using Nonlocal Classical Plate Theory (NCPT). The weighted residual statement and the Galerkin method...

متن کامل

Goal-Oriented Error Estimation for the Fractional Step Theta Scheme

In this work, we derive a goal-oriented a posteriori error estimator for the error due to time-discretization of nonlinear parabolic partial differential equations by the fractional step theta method. This time-stepping scheme is assembled by three steps of the general theta method, that also unifies simple schemes like forward and backward Euler as well as the Crank–Nicolson method. Further, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 279  شماره 

صفحات  -

تاریخ انتشار 2015